Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 132026, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38704074

RESUMEN

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ±â€¯1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ±â€¯0.01 mM) and the highest was piceatannol (1.29 ±â€¯0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.

2.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656412

RESUMEN

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Asunto(s)
Amilosa , Edición Génica , Hordeum , Proteínas de Plantas , Almidón Sintasa , Amilosa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edición Génica/métodos , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , beta-Glucanos/metabolismo , Plantas Modificadas Genéticamente , Solubilidad
3.
Plant Biotechnol J ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412139

RESUMEN

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.

4.
Nat Commun ; 15(1): 503, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218848

RESUMEN

Powdery mildew poses a significant threat to wheat crops worldwide, emphasizing the need for durable disease control strategies. The wheat-Dasypyrum villosum T5AL·5 V#4 S and T5DL·5 V#4 S translocation lines carrying powdery mildew resistant gene Pm55 shows developmental-stage and tissue-specific resistance, whereas T5DL·5 V#5 S line carrying Pm5V confers resistance at all stages. Here, we clone Pm55 and Pm5V, and reveal that they are allelic and renamed as Pm55a and Pm55b, respectively. The two Pm55 alleles encode coiled-coil, nucleotide-binding site-leucine-rich repeat (CNL) proteins, conferring broad-spectrum resistance to powdery mildew. However, they interact differently with a linked inhibitor gene, SuPm55 to cause different resistance to wheat powdery mildew. Notably, Pm55 and SuPm55 encode unrelated CNL proteins, and the inactivation of SuPm55 significantly reduces plant fitness. Combining SuPm55/Pm55a and Pm55b in wheat does not result in allele suppression or yield penalty. Our results provide not only insights into the suppression of resistance in wheat, but also a strategy for breeding durable resistance.


Asunto(s)
Ascomicetos , Triticum , Triticum/genética , Alelos , Ascomicetos/genética , Fitomejoramiento , Poaceae/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética
6.
J Integr Plant Biol ; 66(1): 12-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103031

RESUMEN

The plasma membrane-localized phytosulfokine receptor-like protein TaRLK-6A, interacting with TaSERK1, positively regulates the expression of defense-related genes in wheat, consequently promotes host resistance to Fusarium crown rot.


Asunto(s)
Fusarium , Triticum , Triticum/genética , Fusarium/fisiología , Enfermedades de las Plantas/genética
7.
Nat Commun ; 14(1): 7538, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985755

RESUMEN

Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.


Asunto(s)
Epigenómica , Triticum , Triticum/genética , Triticum/metabolismo , Histonas/metabolismo , Epigénesis Genética , Genoma de Planta/genética
8.
Plant Biotechnol J ; 21(4): 839-853, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36597709

RESUMEN

Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.


Asunto(s)
Infertilidad Masculina , Triticum , Masculino , Humanos , Triticum/genética , Triticum/metabolismo , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño/genética , Mutagénesis/genética , Plantas/genética , Infertilidad Masculina/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas
9.
Plant Commun ; 4(2): 100472, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36352792

RESUMEN

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease that threatens wheat production worldwide. Pm12, which originated from Aegilops speltoides, a wild relative of wheat, confers strong resistance to powdery mildew and therefore has potential use in wheat breeding. Using susceptible mutants induced by gamma irradiation, we physically mapped and isolated Pm12 and showed it to be orthologous to Pm21 from Dasypyrum villosum, also a wild relative of wheat. The resistance function of Pm12 was validated via ethyl methanesulfonate mutagenesis, virus-induced gene silencing, and stable genetic transformation. Evolutionary analysis indicates that the Pm12/Pm21 loci in wheat species are relatively conserved but dynamic. Here, we demonstrated that the two orthologous genes, Pm12 and Pm21, possess differential resistance against the same set of Bgt isolates. Overexpression of the coiled-coil domains of both PM12 and PM21 induces cell death in Nicotiana benthamiana leaves. However, their full-length forms display different cell death-inducing activities caused by their distinct intramolecular interactions. Cloning of Pm12 will facilitate its application in wheat breeding programs. This study also gives new insight into two orthologous resistance genes, Pm12 and Pm21, which show different race specificities and intramolecular interaction patterns.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Genes de Plantas , Poaceae/genética
10.
New Phytol ; 233(2): 738-750, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655489

RESUMEN

Rht-B1b and Rht-D1b, the 'Green Revolution' (GR) genes, greatly improved yield potential of wheat under nitrogen fertilizer application, but reduced coleoptile length, seedling vigor and grain weight. Thus, mining alternative reduced plant height genes without adverse effects is urgently needed. We isolated the causal gene of Rht24 through map-based cloning and characterized its function using transgenic, physiobiochemical and transcriptome assays. We confirmed genetic effects of the dwarfing allele Rht24b with an association analysis and also traced its origin and distribution. Rht24 encodes a gibberellin (GA) 2-oxidase, TaGA2ox-A9. Rht24b conferred higher expression of TaGA2ox-A9 in stems, leading to a reduction of bioactive GA in stems but an elevation in leaves at the jointing stage. Strikingly, Rht24b reduced plant height, but had no yield penalty; it significantly increased nitrogen use efficiency, photosynthetic rate and the expression of related genes. Evolutionary analysis demonstrated that Rht24b first appeared in wild emmer and was detected in more than half of wild emmer and wheat accessions, suggesting that it underwent both natural and artificial selection. These findings uncover an important genetic resource for wheat breeding and also provide clues for dissecting the regulatory mechanisms underlying GA-mediated morphogenesis and yield formation.


Asunto(s)
Fitomejoramiento , Triticum , Alelos , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
11.
Plant J ; 108(3): 829-840, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34492155

RESUMEN

High-molecular-weight glutenin subunits (HMW-GS) are major components of seed storage proteins (SSPs) and largely determine the processing properties of wheat (Triticum aestivum) flour. HMW-GS are encoded by the GLU-1 loci and regulated at the transcriptional level by interaction between cis-elements and transcription factors (TFs). We recently validated the function of conserved cis-regulatory modules (CCRMs) in GLU-1 promoters, but their interacting TFs remained uncharacterized. Here we identified a CCRM-binding NAM-ATAF-CUC (NAC) protein, TaNAC100, through yeast one-hybrid (Y1H) library screening. Transactivation assays demonstrated that TaNAC100 could bind to the GLU-1 promoters and repress their transcription activity in tobacco (Nicotiana benthamiana). Overexpression of TaNAC100 in wheat significantly reduced the contents of HMW-GS and other SSPs as well as total seed protein. This was confirmed by transcriptome analyses. Conversely, enhanced expression of TaNAC100 increased seed starch contents and expression of key starch synthesis-related genes, such as TaGBSS1 and TaSUS2. Y1H assays also indicated TaNAC100 binding with the promoters of TaGBSS1 and TaSUS2. These results suggest that TaNAC100 functions as a hub controlling seed protein and starch synthesis. Phenotypic analyses showed that TaNAC100 overexpression repressed plant height, increased heading date, and promoted seed size and thousand kernel weight. We also investigated sequence variations in a panel of cultivars, but did not identify significant association of TaNAC100 haplotypes with agronomic traits. The findings not only uncover a useful gene for wheat breeding but also provide an entry point to reveal the mechanism underlying metabolic balance of seed storage products.


Asunto(s)
Proteínas de Plantas/genética , Semillas/metabolismo , Almidón/biosíntesis , Triticum/fisiología , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Pleiotropía Genética , Haplotipos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Almidón/genética
13.
Plant Cell ; 33(9): 3004-3021, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34129038

RESUMEN

Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Homeostasis , Nitratos/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
15.
J Integr Plant Biol ; 63(5): 902-912, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33210841

RESUMEN

Nitrate is the main source of nitrogen for plants but often distributed heterogeneously in soil. Plants have evolved sophisticated strategies to achieve adequate nitrate by modulating the root system architecture. The nitrate acquisition system is triggered by the short mobile peptides C-TERMINALLY ENCODED PEPTIDES (CEPs) that are synthesized on the nitrate-starved roots, but induce the expression of nitrate transporters on the other nitrate-rich roots through an unclear signal transduction pathway. Here, we demonstrate that the transcription factors HBI1 and TCP20 play important roles in plant growth and development in response to fluctuating nitrate supply. HBI1 physically interacts with TCP20, and this interaction was enhanced by the nitrate starvation. HBI1 and TCP20 directly bind to the promoters of CEPs and cooperatively induce their expression. Mutation in HBIs and/or TCP20 resulted in impaired systemic nitrate acquisition response. Our solid genetic and molecular evidence strongly indicate that the HBI1-TCP20 module positively regulates the CEPs-mediated systemic nitrate acquisition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal
17.
Plant Sci ; 294: 110441, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32234224

RESUMEN

Various abiotic stresses, including high salinity, affect the growth and yield of crop plants. We isolated a gene, TaPUB26, from wheat that encodes a protein containing a U-box domain and armadillo (ARM) repeats. The TaPUB26 transcript levels were upregulated by high salinity, temperature, drought and phytohormones, suggesting the involvement of TaPUB26 in abiotic stress responses. An in vitro ubiquitination assay revealed that TaPUB26 is an E3 ubiquitin ligase. We overexpressed TaPUB26 in Brachypodium distachyon to evaluate TaPUB26 regulation of salt stress tolerance. Compared with the wild type (WT) line, the overexpression lines showed higher salt stress sensitivity under salt stress conditions, but lower chlorophyll (Chl) content, lower photosynthetic levels and overall reduced salt stress tolerance. Additionally, the transgenic plants showed more severe membrane damage, lower antioxidant enzyme activity and more reactive oxygen species (ROS) accumulation than WT plants under salt stress, which might be related to the changes in the expression levels of some antioxidant genes. In addition, the transgenic plants also had higher Na+ and lower K+ contents, thus maintaining a higher cytosolic Na+/K+ ratio in leaves and roots than that in WT plants. Further analysis of the molecular mechanisms showed that TaPUB26 interacted with TaRPT2a, an ATPase subunit of the 26S proteasome complex in wheat. We speculated that TaPUB26 negatively regulates salt stress tolerance by interacting with other proteins, such as TaRPT2a, and that this mechanism involves altered antioxidant competition and cytosolic Na+/K+ equilibrium.


Asunto(s)
Brachypodium/efectos de los fármacos , Brachypodium/enzimología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Triticum/enzimología , Brachypodium/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis , Plantas Modificadas Genéticamente/genética , Potasio/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/genética , Estrés Salino/fisiología , Sodio/metabolismo
18.
BMC Genomics ; 21(1): 200, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131726

RESUMEN

BACKGROUND: PhasiRNAs (phased secondary siRNAs) play important regulatory roles in the development processes and biotic or abiotic stresses in plants. Some of phasiRNAs involve in the reproductive development in grasses, which include two categories, 21-nt (nucleotide) and 24-nt phasiRNAs. They are triggered by miR2118 and miR2275 respectively, in premeiotic and meiotic anthers of rice, maize and other grass species. Wheat (Triticum aestivum) with three closely related subgenomes (subA, subB and subD), is a model of allopolyploid in plants. Knowledge about the role of phasiRNAs in the inflorescence development of wheat is absent until now, and the evolution of PHAS loci in polyploid plants is also unavailable. RESULTS: Using 261 small RNA expression datasets from various tissues, a batch of PHAS (phasiRNA precursors) loci were identified in the young spike of wheat, most of which were regulated by miR2118 and miR2275 in their target site regions. Dissection of PHAS and their trigger miRNAs among the diploid (AA and DD), tetraploid (AABB) and hexaploid (AABBDD) genomes of Triticum indicated that distribution of PHAS loci were dominant randomly in local chromosomes, while miR2118 was dominant only in the subB genome. The diversity of PHAS loci in the three subgenomes of wheat and their progenitor genomes (AA, DD and AABB) suggested that they originated or diverged at least before the occurrence of the tetraploid AABB genome. The positive correlation between the PHAS loci or the trigger miRNAs and the ploidy of genome indicated the expansion of genome was the major drive force for the increase of PHAS loci and their trigger miRNAs in Triticum. In addition, the expression profiles of the PHAS transcripts suggested they responded to abiotic stresses such as cold stress in wheat. CONCLUSIONS: Altogether, non-coding phasiRNAs are conserved transcriptional regulators that display quick plasticity in Triticum genome. They may be involved in reproductive development and abiotic stress in wheat. It could be referred to molecular research on male reproductive development in Triticum.


Asunto(s)
MicroARNs/genética , ARN Interferente Pequeño/genética , Triticum/crecimiento & desarrollo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Poliploidía , ARN de Planta/genética , Triticum/genética
19.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480315

RESUMEN

The CRISPR/Cas9 system has been successfully used in hexaploid wheat. Although it has been reported that the induced mutations can be passed to the next generation, gene editing and transmission patterns in later generations still need to be studied. In this study, we demonstrated that the CRISPR/Cas9 system could achieve efficient mutagenesis in five wheat genes via Agrobacterium-mediated transformation of an sgRNA targeting the D genome, an sgRNA targeting both the A and B homologues and three tri-genome guides targeting the editing of all three homologues. High mutation rates and putative homozygous or biallelic mutations were observed in the T0 plants. The targeted mutations could be stably inherited by the next generation, and the editing efficiency of each mutant line increased significantly across generations. The editing types and inheritance of targeted mutagenesis were similar, which were not related to the targeted subgenome number. The presence of Cas9/sgRNA could cause new mutations in subsequent generations, while mutated lines without Cas9/sgRNA could retain the mutation type. Additionally, off-target mutations were not found in sequences that were highly homologous to the selected sgRNA sequences. Overall, the results suggested that CRISPR/Cas9-induced gene editing via Agrobacterium-mediated transformation plays important roles in wheat genome engineering.


Asunto(s)
Agrobacterium/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Patrón de Herencia/genética , Mutagénesis/genética , Triticum/genética , Secuencia de Bases , Edición Génica , Genes de Plantas , Vectores Genéticos/metabolismo , Genotipo , Tasa de Mutación , ARN Guía de Kinetoplastida/genética
20.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31248042

RESUMEN

Disease resistance genes encoding proteins with nucleotide binding sites and Leucine-Rich Repeat (NB-LRR) domains include many members involved in the effector-triggered immunity pathway in plants. The transcript levels of these defense genes are negatively regulated by diverse microRNAs (miRNAs) in angiosperms and gymnosperms. In wheat, using small RNA expression datasets and degradome datasets, we identified five miRNA families targeting NB-LRR defense genes in monocots, some of which arose in the Triticeae species era. These miRNAs regulate different types of NB-LRR genes, most of them with coil-coiled domains, and trigger the generation of secondary small interfering RNAs (siRNA) as a phased pattern in the target site regions. In addition to acting in response to biotic stresses, they are also responsive to abiotic stresses such as heat, drought, salt, and light stress. Their copy number and expression variation in Triticeae suggest a rapid birth and death frequency. Altogether, non-conserved miRNAs as conserved transcriptional regulators in gymnosperms and angiosperms regulating the disease resistance genes displayed quick plasticity including the variations of sequences, gene copy number, functions, and expression level, which accompanied with NB-LRR genes may be tune-regulated to plants in natural environments with various biotic and abiotic stresses.


Asunto(s)
Resistencia a la Enfermedad/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Poaceae/genética , Sitios de Unión , Perfilación de la Expresión Génica , MicroARNs/química , Motivos de Nucleótidos , Filogenia , Poaceae/clasificación , Posición Específica de Matrices de Puntuación , Interferencia de ARN , Estrés Fisiológico , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...